

Reliability Guideline

Electromagnetic Transient Modeling for BPS-Connected Inverter-Based Resources — Recommended Model Requirements and Verification Practices

NERC Webinar May 16, 2023

Introduction

Join at slido.com #ERO1

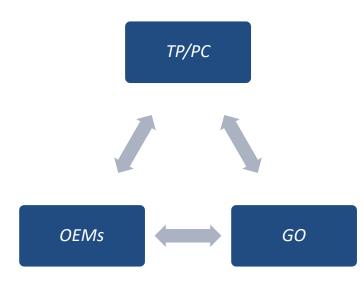
Program

- 1. Opening Remarks Dr. Ryan Quint, Director, Engineering and Security Integration, NERC
- 2. EMT Modeling Guideline in a Nutshell Aung Thant, Senior Engineer, NERC
- 3. ERCOT Experience with EMT Model Requirements John Schmall, Principal Engineer, ERCOT
- 4. Recommendations for Generator Owners (GOs) Andrew Isaacs, VP, Electranix
- 5. Recommendations for Equipment Manufacturers (OEMs) Miguel A. Cova Acosta, Lead Specialist, Vestas
- 6. Q&A
- 7. Credits

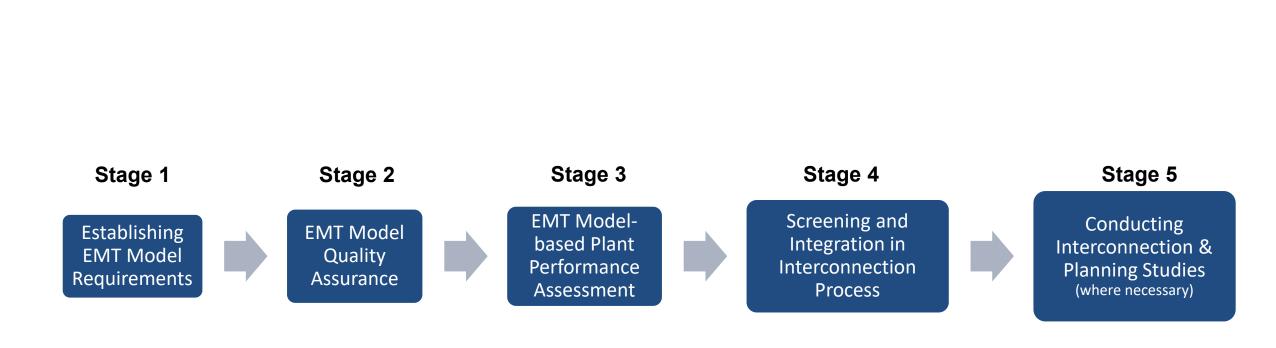
Opening Remarks

by

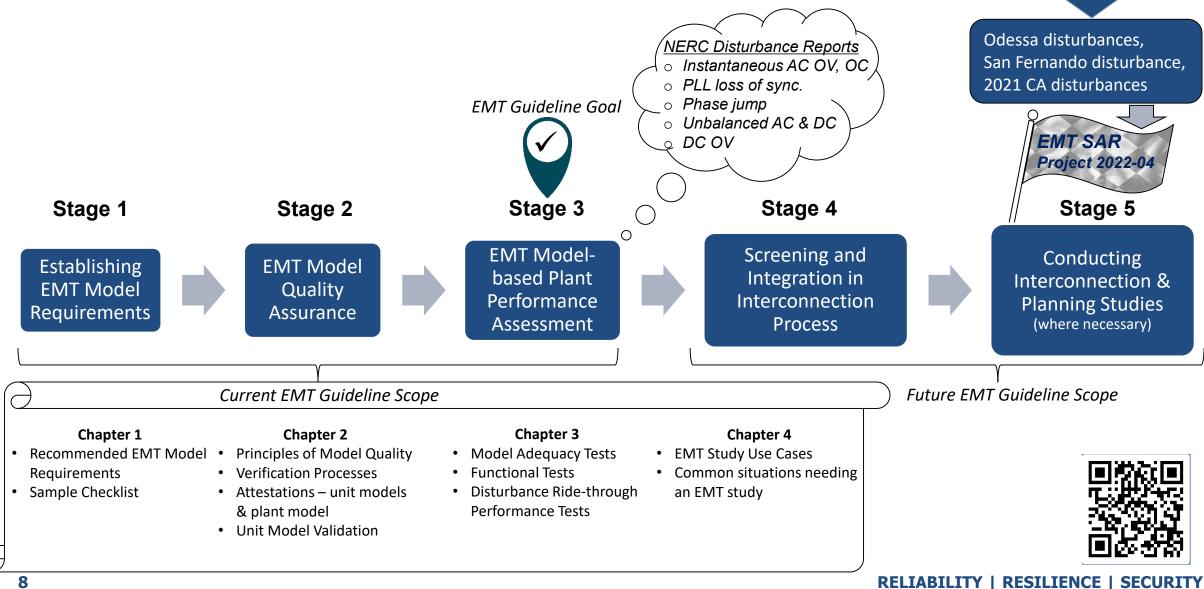
Dr. Ryan Quint, Director, Engineering and Security Integration, NERC

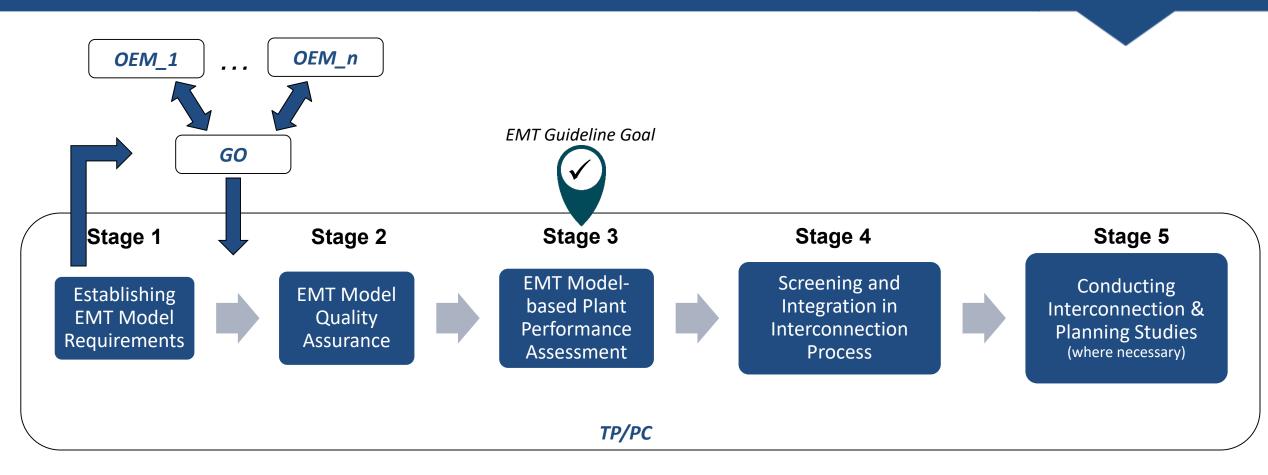


EMT Modeling Guideline in a Nutshell


by

Aung Thant (Senior Engineer, NERC EMTTF Coordinator)



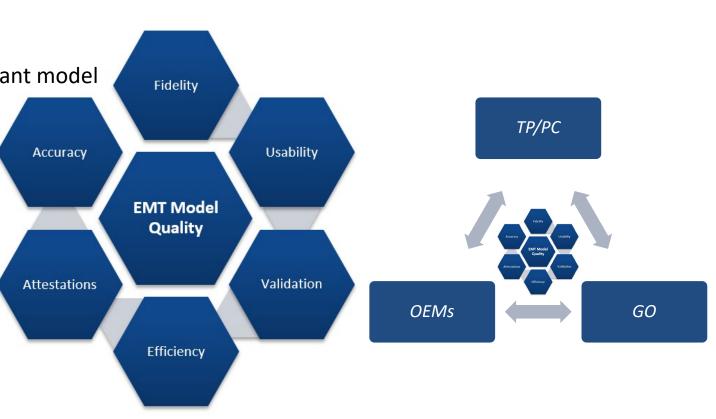


NORTH AMERICAN ELECTRIC RELIABILITY CORPORATION

Classification: Confidential

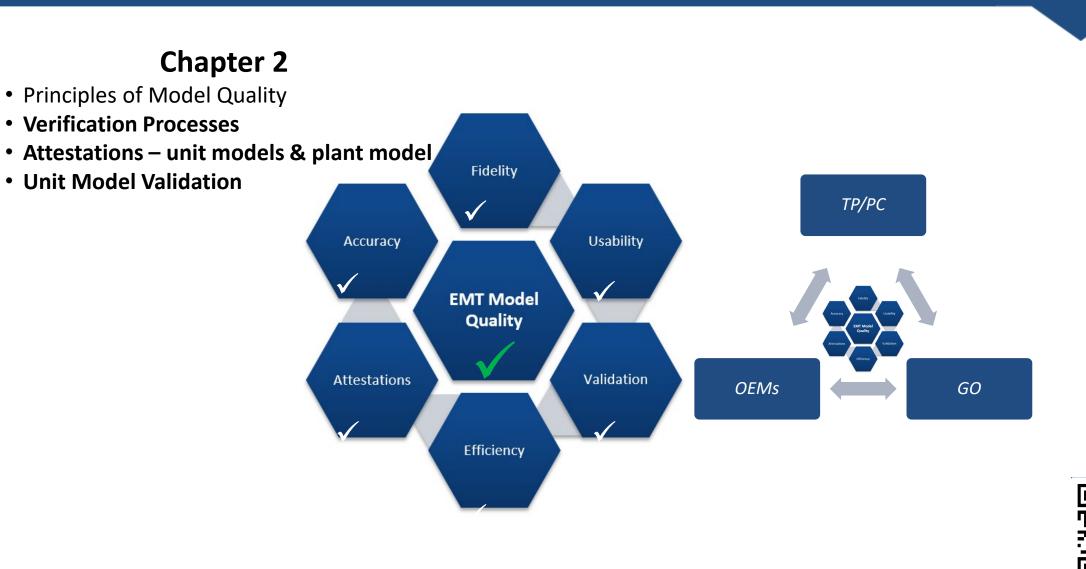
EMT Modeling Visualized by Functional Entities

- Establish EMT modeling requirements per FAC-002 for all new IBR resources
- Create a "checklist" of EMT model requirements for GO and equipment manufacturers
- Require high quality EMT models as a prerequisite of interconnection
- Require the EMT models accurately represents all pertinent controls, and protections that could affect the electrical output of the facility during and after grid disturbances
- Require all submitted EMT models include
 - Attestations by the equipment manufacturers and
 - Attestations by GO that aggregate model represents the entire plant includes site-specific models, settings, protections, and controls
- Include change management requirements and protocols regarding how changes should be reflected in EMT models by the GO
- Clearly define the purview and duration of EMT simulations



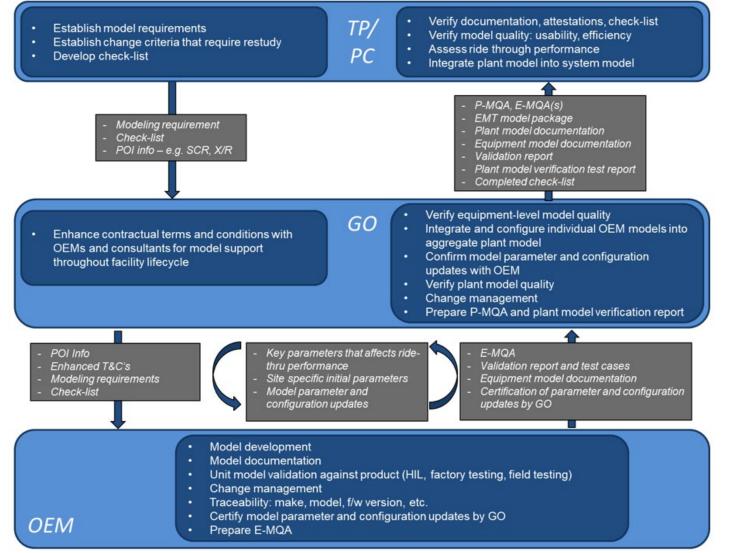
Chapter 2: Principles of Model Quality

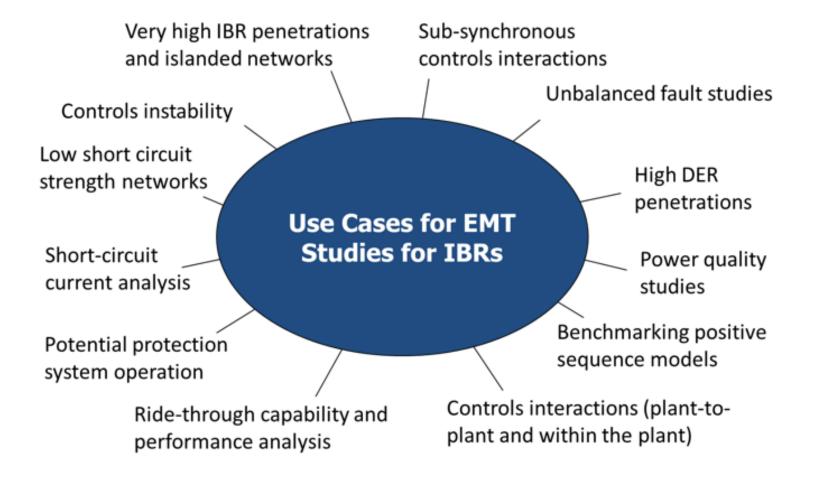
Chapter 2


- Principles of Model Quality
- Verification Processes
- Attestations unit models & plant model
- Unit Model Validation

Chapter 2: Model Quality Verification

Chapter 2: Model Quality Verification Processes




Figure 2.2: Model Quality Verification Processes, pg. 18

RELIABILITY | RESILIENCE | SECURITY

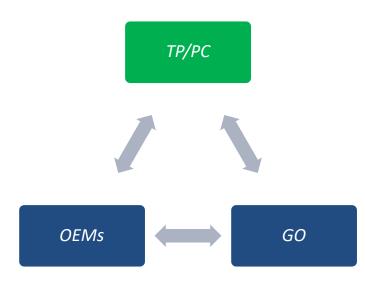
Classification: Confidential

Chapter 4: EMT Study Use Cases

Chapter 5 and Appendices

- Chapter 5: Other Relevant Topics
 - Benchmarking Positive Sequence Dynamic Models against the EMT Model
 - Resourcing for Future EMT Study Needs
 - Applicability and Use of IEEE 2800 Guidance
- Appendix A: EMT Model Terminology
 - Generic versus Equipment Specific Models
 - Equipment-Specific Model Types
 - Transparent EMT Models
 - "Black Box" EMT Models
 - "Real Code" EMT Models
 - Detailed and Aggregate EMT Modeling
- Appendix B: References for EMT Model Requirements

- Help industry close EMT modeling knowledge gaps
- Provide a foundation of knowledge for new modeling requirements and practices
- Guidance to make quality-vetted EMT models available to TPs and PCs for the purposes of reliability studies – interconnection studies per FAC-002 and planning assessments per TPL-001
- Help industry close current gaps between interconnection studies and installed equipment



ERCOT Experience with EMT Model Requirements

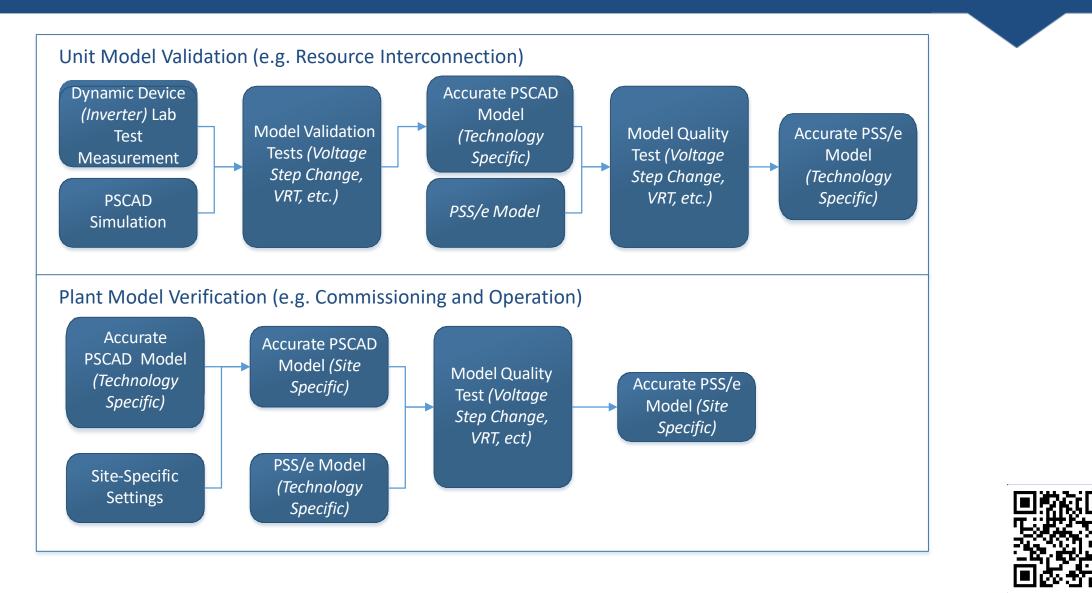
by

John Schmall (Principal Engineer, ERCOT Transmission Planning)

- 2009 SSR/SSCI Event in ERCOT
- 2013-2017 SSR/SSCI Evaluation Requirements
- 2015 Panhandle Study
 - Large-Scale Application Beyond the SSR/SSCI Realm
- 2016 EMT Models Required to be Submitted
 - All New IBR Interconnections
 - EMT Model Guidelines/Checklist
- 2021 Implemented More Thorough Review Processes
 - Planning Guide Revision Request (PGRR) 085
 - Validation
 - Benchmarking (PSCAD versus PSS/e)

- Effective May 1, 2020
- Introduced model quality test (MQT) requirements (for PSS/e dynamic model)
- Performed/submitted by resource owner
- Demonstrate basic reasonable model performance
 - Flat Start Test (no disturbance test)
 - Voltage Step Change Test
 - Frequency Step Change Test
 - Voltage Ride Through Test (HVRT & LVRT)
 - Short Circuit Ratio Test
- Performance guidance published in DWG Procedure Manual

These are not EMT requirements, but ERCOT emphasizes model consistency between PSS/e and PSCAD.



- Effective March 1, 2021
- Introduced MQT requirements for PSCAD model
 - Same reasonability tests as PSS/e MQT plus added phase angle jump test
 - Performance consistency across software platforms (PSS/e, PSCAD)
- Introduced unit model validation (UMV) requirements (for PSCAD model)
 - Intended to be a lab test model validation
 - Technology specific rather than site specific
- Introduced parameter verification requirements
 - Document that site specific tunable field settings match model parameters
- Performed/submitted by resource owner
 - Required prior to Quarterly Stability Assessment (QSA)

Model Validation and Verification Concept

Summary of Dynamic Model Requirements

Requirement	Applicable Equipment	Required Tests ⁽¹⁾	When to Update	Responsi ble Entity	Language
Model Quality Test for PSS/e Model	All Resources and Dynamic Transmission Elements (system strength test is only required for inverter- based devices)	Flat start, small and large voltage disturbance, small frequency disturbance, and system strength tests	A new or updated model	Equipment owner (RE, IE or TSP)	PG 6.2(5)(c)
Model Quality Test for PSCAD Model	Inverter-based Resources (IBRs) and Dynamic Transmission Elements	All above tests plus phase angle jump test	A new or updated model	Equipment owner (RE, IE or TSP)	PG 6.2(5)(c)
Unit Model Validation for PSCAD Model ⁽²⁾	Inverter-based Resources (IBRs)	Step change in voltage, large voltage disturbance, system strength, phase angle jump, and subsynchronous tests	A new PSCAD model provided after 3/1/21. (Validation tests should not need updating for model parameter updates on an existing model.)	Resource owner (RE or IE)	PG 6.2(5)(d)
Model Parameter Verification ("Verification Report")	All Resources and Dynamic Transmission Elements	Provide evidence that tunable model parameters match what is implemented in the field. Evidence can take the form of screenshots, nameplate photographs, signed manufacturer commissioning reports, etc.	 Required within 30 days of COD (i.e., Part 3 approval), 12 to 24 months after COD or 12-24 months after March 1, 2021 for existing resources, A minimum of every 10 years. Within 30 days of a change at the plant 	Equipment owner (RE, IE or TSP)	PG 5.5, PG 6.2(5)(b)

(1) Detailed test information is available in the <u>DWG Procedural Manual</u> 3.1.5.

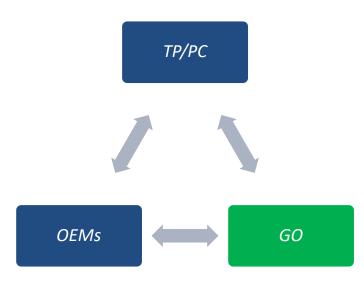
(2) Benchmark the PSCAD model against actual hardware measurements. This is <u>not</u> a site-specific test; the same report can be submitted for different projects whenever that the same inverter is used.

- Timing and availability of EMT model
 - Resistance/barriers to providing EMT model early in the interconnection process
- Proprietary models (issues largely resolved with black box models)
- EMT model does not automatically equal good/accurate model
 - Testing and review is needed
 - Model functionality and usability (troubleshooting)
 - Need for EMT model "Template"?
 - Beneficial to use single plot axes for performance comparisons cross software platforms
 - Cannot test everything need to strike an appropriate balance

- When Is an EMT system study needed?
 - Largely based on engineering judgment Industry does not agree on a bright-line criterion
 - ERCOT does not routinely require an EMT system study during interconnection process unless needed to assess a potential SSR vulnerability
 - Incorporation of legacy units in the study area
 - Impact on interconnection timelines for new generation
 - More complex models > Unexpected study challenges > More uncertainty in study timelines
- Stability is primarily assessed with positive sequence tools in ERCOT
 - EMT studies are conducted when deemed necessary

- Model Quality Guide, published on the <u>RE webpage at ercot.com</u>
- Includes ERCOT PSCAD model guidelines/checklist
- Links to external PSCAD tools: <u>PMVIEW</u> and <u>PCAR</u>
- Dynamic Model Templates, published on the <u>RE webpage at ercot.com</u>
- Planning Guide Revision Request PGRR-075 (approved & effective)
- <u>Planning Guide Revision Request PGRR-085</u> (approved & effective)
- <u>Planning Guide</u> section 5.5 (in particular, paragraph (2) and (3))
- <u>Planning Guide</u> section 6.2 (in particular, paragraph (5))
- <u>DWG Procedure Manual</u> section 3.1

ERCOT model requirements are intended to complement NERC MOD-026/027 model verification requirements.



Recommendations for Generator Owners

What to do and what to look out for ...

by

Andrew Isaacs (VP, Electranix)

- Recommendations for Generator Owners (GOs) and their consultants (pg. 18-20) include:
 - Verification of component models and the overall facility, including a set of detailed suggestions for what constitutes verification
 - Suggestions for working with the OEM and for how to continue support for the model going forward
 - The EMT models need to be very detailed and accurate!

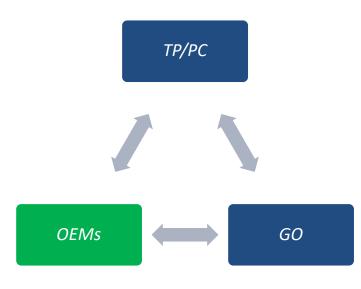
• Why though? Pandering (but short) lecture to follow

- Models are the basic components of the studies that are (or will be) relied upon. If they are badly wrong, we are all wasting our time and the lights may go off.
- EMT models in particular are used for special situations, or when we have insufficient confidence that Phasor Domain tools are correctly predicting outcomes.
- Note that if we can't replace the pieces we're missing from PD tools, then why do the study at all? Hence, the models need to be accurate in the ways that PD tools cannot be.
 - e.g. Why does a plant fail to ride through a fault? Why might a PD tool miss this?

- How are the plant models built in a way that matches recommendations?
 - Design your plant to the best degree you can. Try to be as certain as possible about equipment choices, plant design, etc. The more certainty you can commit at an early stage, the smoother your path will be down the road. People will make decisions based on your choices, and changing your mind may have consequences!
 - Review local specific requirements
 - Collect component models from OEMs, including information and assistance regarding parameterization.
 - Batteries, PV inverter modules, wind turbines, power plant controllers, etc.
 - Test the component models (use quality, accuracy and usability tests publicly available, or develop your own based on industry guidance)

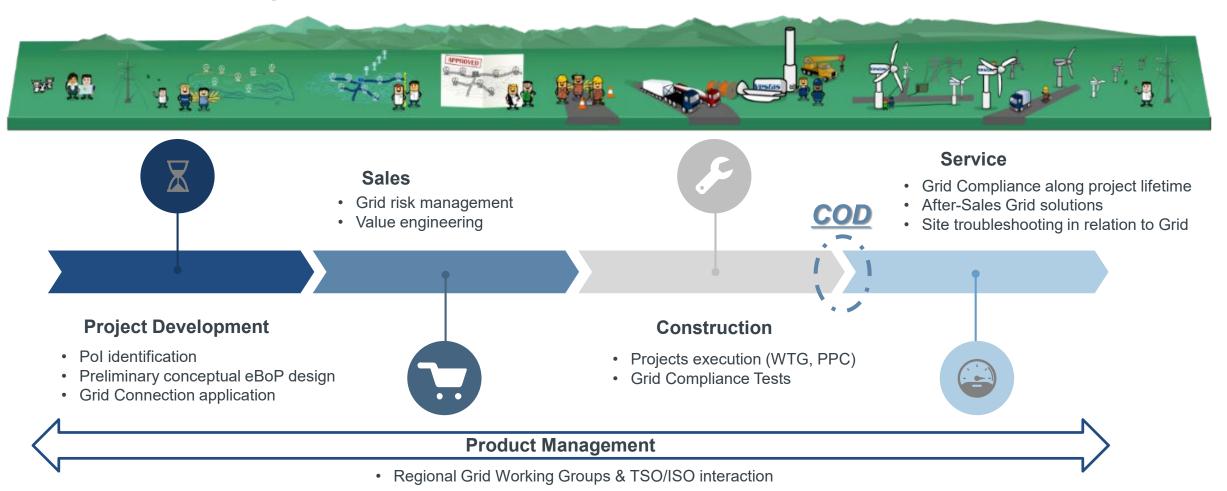
- How are the plant models built in a way that matches recommendations (cont.)?
 - Collaborate with site design engineers/EPC to understand plant layout. Focus on high level plant electrical SLDs, inter-device communication and coordination, and protection.
 - Perform aggregation exercise for collector and generator systems.
 - Assemble the plant model in applicable tools (Phasor domain and EMT).
 - Perform final quality tests and likely performance tests which match requirements for the utility as well as they are known and to the extent possible (note that you may not have much system info).
 - Requires continued collaboration with OEMs... note recommendation to enhance contractual relationship with OEMs.
 - Best practice and sometimes required: compare responses between tools to ensure basic parameterization is correct.
 - Document, submit, and prepare to support the model going forward. Your job isn't done after submission.

- Expertise/experience is in high demand.
 - *Tip:* Develop in-house expertise to the degree possible.
 - *Tip:* Plan resourcing in advance. Please don't leave it until 1 week before a submission deadline!
 Everyone is busy, and the work can be complex. Line up resources months in advance if possible.
- Early plant designs may be very preliminary.
 - Tip: Use best available information, but understand that many process will be using these models for studies, and changing equipment in material ways can have implications on project.
 - Tip: Try to build commitment into your project flow, contractually or otherwise. Changing horses (i.e. inverters) midstream usually results in re-study and delay, and may impact queue position.


- Coordination of OEM models (e.g. Inverter, PPC, STATCOM) requires the EPC or integrator to have a good understanding of all the pieces.
 - *Tip:* Ask questions like:
 - o How is voltage control coordinated?
 - \circ Which component of the plant is responsible for meeting each performance requirement of the TO?
 - What are the communication or sampling delays involved between plant components?
 - o What are the response timeframe does each piece operate under?
 - What degree of confidence do I have in each answer, and how does that impact risk for the project?
- Understanding the connection between hardware settings and model settings for correct parameterization and as-built confirmation. Field engineers speak a different language from modeling engineers.
 - Tip: OEMs are the key here! Build a relationship (or contract) with OEMs so that they can assist through the process. Consider this support as you make OEM selections.

Recommendations for Equipment Manufacturers (OEMs) by

Miguel A. Cova Acosta (Lead Specialist, Vestas)


- OEM should consider system information provided by GOs and configure the equipment models accordingly to be site specific.
- OEM should not indiscriminately provide models with default parameters to GOs.
- OEM should collaborate with GOs to review and approve any changes to the model parameters and configuration.
- OEM should develop change management to ensure traceability of the equipment models to actual product model, variant, firmware version.
- OEM should be prepared to provide unit model validation reports.
- OEM should make clear in model documentation the following:
 - Any built-in, hardcoded, or hardware-based protection that can affect the inverter current output during and post grid disturbances
 - User-settable settings that can affect the inverter current output during and post grid disturbances

Project Development Phases

OEM should develop change management to ensure traceability of the equipment models to actual product model, variant, firmware version.

RELIABILITY | RESILIENCE | SECURITY

Classification: Confidential

Model Life Span

Model Evolution		
Preliminary Project	сод Timeline	20+ Years
	Classification: Confidential	RELIABILITY RESILIENCE SECURITY

Model Updates

Models Traceability and Maintenance

Model Lifecycle

- · Models are being constantly upgraded
- Models are updated based on bug fixes or new features for real product

New Sales Project

Beginning of model cycle release

for a new potential sales project

GI Studies

 Constant monitoring of performance and usability for Grid Code Compliance

Service Project Ending of lifecycle when project is energized and delivering full power to grid

Plant Connection

RELIABILITY | RESILIENCE | SECURITY

Mature

Models

EMT Model Overview

Hardware Circuit Represents the electric circuit model for a wind turbine. The most common topologies will be Type-3 and Type 4

Control Code

Source Code from product controller that monitors the state of the input and takes decisions based upon user commands and parametrization

Interface

User Interface to control and configure the model performance. Normally resides in the visual interface of the power system simulation tool

Parametrization

Set of site-specific set of parameters required for grid code compliance in every different market

- Parametrization is a fundamental subpart of the electrical models is directly linked with the control code.
- Parametrization will contain several hundreds of parameters in the product that will determine the performance of the specific turbine or power plant control variant.
- Some of these parameters are accessible to the user for fine-tuning. However, most of them remain encrypted to guarantee the performance of the product and the grid code compliance.
- Regardless the parameter encryption, models should be flexible to provide the option for users to overwrite any single parameter of the model with without recompiling or reissuing the model dll's or lib files.

Questions and Answers

Acknowledgements

NERC gratefully acknowledges the contributions and assistance of the following industry

experts in the preparation of this guideline

Name	Entity
Hans Abildgaard	Vestas
Miguel Angel Cova Acosta	Vestas
Andrew Arana	Florida Power and Light
Kahveh Atef	San Diego Gas and Electric
Wes Baker	Southern Company
Hassan Baklou	San Diego Gas and Electric
Jeff Billo	Electric Reliability Council of Texas
Jonathan Goldsworthy	ITC Holdings
Henry Gras	EMTP
Jean-Francois Haché	Hydro-Québec
Aboutaleb Haddadi	Electric Power Research Institute
lan Higginson	Power Engineers
Andy Hoke	National Renewable Energy Laboratory
My-Quan Hong	Southern California Edison
Dustin Howard	General Electric
Fred Huang	Electric Reliability Council of Texas
Garth Irwin	Electranix Corporation
Andrew Isaacs	Electranix Corporation
Milad Kahrobaee	Nayak Corporation
Venkat Konala	Urban Grid
Chester Li	Hydro One
Min Lwin	General Electric
Jason MacDowell	General Electric
Rajat Majumder	Orsted
Brad Marszalkowski	ISO New England
Julia Matevosyan	ESIG
Tayeb Meridji	Orsted
Siddharth Pant	General Electric
Jayanth Ramamurthy	Entergy
Deepak Ramasubramanian	Electric Power Research Institute

Acknowledgements

Name	Entity
Maysam Radvar	Ready Technologies
Rey Ramos	Southern Company
Matthew Richwine	Telos Energy
Dmitry Rimorov	Hydro-Québec
Mark Robinson	AES
David Roop	Mitsubishi Electric Power Products, Inc.
Michael Ropp	Northern Plains Power
Omar Saad	Hydro-Québec
Steven Saylors	Vestas
Thomas Schmidt Grau	Vestas
Allen Schriver	NextEra Energy
Karim Shaarbafi	Alberta Electric System Operator
	Commonwealth Edison
Mohit Singh	Mitsubishi Electric Power Products, Inc.
Adam Sparacino	Burns & McDonnell
Khundmir Syed	
Diwakar Tewari	Leidos
Olivier Tremblay	Hydro-Québec
Lukas Unruh	Electranix Corporation
Jake Walker	Southern Company
Xiaoyu Wang	Enel North America
Li Yu	Hawaiian Electric
Jimmy Zhang	Alberta Electric System Operator (AESO)
Jeffrey G Barton	Bonneville Power Administration
Shengen Chen	RLC Engineering
Farhad Yahyaie	Siemens
Joshua Kerr	ATC
Ravi Dodballapur	SMA America

Acknowledgements

Name	Entity
Fabio Rodriguez	Duke Energy
Mani V. Venkatasubramanian	Washington State University
Hari Singh	Xcel Energy
Suman Debnath	Oak Ridge National Laboratory
Ransome Egunjobi	Enel North America
Elliott Mitchell-Colgan	Bonneville Power Administration
Rich Bauer	North American Electric Reliability Corporation
Hongtao Ma	North American Electric Reliability Corporation
Ryan Quint	North American Electric Reliability Corporation
Alexander Shattuck	North American Electric Reliability Corporation
Aung Thant	North American Electric Reliability Corporation